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1. Introduction
• The objective of distribution system analysis is to determine the state of 

the system including voltages, real and reactive power flow on lines, and 
losses in the system. 

• This requires modeling all the components in the system such as lines and 
transformers and their interconnections based on the topology. In 
addition, models for loads and sources connected to the system are 
needed. 

• Since distribution system is connected to transmission systems, which are 
connected to large generators, we model the whole upper level system at 
the point of coupling as an equivalent source. 

• Distributed energy resources (DERs) directly connected to the distribution 
system are modeled based on their characteristics.
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2. Modeling of Source Impedance
• A method that is valid for both radial and loop systems is to derive the sequence 

impedance values from the results of a fault study. 

• The procedure involves considering different types of faults at the bus of interest 
and using the equivalent circuit for each fault to determine the source impedance 
for positive, negative, and zero sequences, as given below for bus m.

𝑍𝑍1𝑠𝑠𝑠𝑠 =
𝑉𝑉
𝐼𝐼𝛽𝛽 
𝑠𝑠 − 𝑍𝑍𝑓𝑓

𝑍𝑍2𝑠𝑠𝑠𝑠 =
𝑗𝑗 3𝑉𝑉
𝐼𝐼𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠

− 𝑍𝑍𝑠𝑠1𝑠𝑠 − 𝑍𝑍𝑓𝑓

𝑍𝑍0𝑠𝑠𝑠𝑠 =
3𝑉𝑉
𝐼𝐼𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠

− 𝑍𝑍𝑠𝑠1𝑠𝑠 − 𝑍𝑍𝑠𝑠2𝑠𝑠 − 3𝑍𝑍𝑓𝑓

Where
 𝑽𝑽, system nominal voltage (line neutral);
 𝑰𝑰𝜷𝜷𝜷𝜷𝒎𝒎 , three-phase fault current at bus 𝑚𝑚;
𝑰𝑰𝒇𝒇𝒇𝒇𝒇𝒇𝒎𝒎 , line-to-line fault current at bus 𝑚𝑚;

𝑰𝑰𝒇𝒇𝒇𝒇𝒇𝒇𝒎𝒎 , SLG fault current at bus 𝑚𝑚;𝒁𝒁𝒇𝒇, fault impedance

• This method requires the presence of all three phases, as well as line-to-line and 
single-line-to-ground faults, so it can only be used on buses with all three phases. 4

Subscripts 1,2,and 0 represents 
positive, negative and zero 
sequence quantities
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2. Modeling of Source Impedance
• Knowing the sequence values, the corresponding values in the phase domain can be 

obtained by the proper symmetrical component similarity transformation.

• However, the obtained result will be an approximation because all the lines must be fully 
transposed to balance the three phases for decoupling of the sequence impedances. 

• This assumption works well in transmission systems but not for distribution systems. So, if 
we have to represent the entire transmission system at the substation, this approach will 
work well.

• For loop systems, if 𝑍𝑍𝐵𝐵𝐵𝐵𝐵𝐵  matrix of the entire system in phase domain is known, the 
diagonal submatrix 𝑍𝑍abc 

𝑠𝑠  corresponding to bus 𝑚𝑚 is the source impedance (3 × 3) matrix. 
This is also called the driving point impedance matrix. 

𝑍𝑍𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠 =
𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠

Note: the driving point impedance obtained based on the positive-sequence network topology of the system 
should not be used for fault calculations because it does not account for transformer connections that are 
important for the zero-sequence network.
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3. Load Models
• Under steady state, complex power S at any location in a distribution system 

varies with voltage and can be described as a function of voltage V at that point, 
that is

𝑺𝑺 = 𝑽𝑽I∗ = 𝑃𝑃 + 𝑗𝑗𝑗𝑗 = 𝑓𝑓(𝑽𝑽)
• Different modeling approaches are used to describe the relationship of the above 

equation.

3.1 Load Model I
• It is usual to represent both P and Q as a general polynomial function of V.

𝑃𝑃 = 𝑎𝑎0 + 𝑎𝑎1𝑉𝑉 + 𝑎𝑎2𝑉𝑉2 + 𝑎𝑎−1𝑉𝑉−1 + 𝑎𝑎−2𝑉𝑉−2 + ⋯
𝑗𝑗 = 𝑏𝑏0 + 𝑏𝑏1𝑉𝑉 + 𝑏𝑏2𝑉𝑉2 + 𝑏𝑏−1𝑉𝑉−1 + 𝑏𝑏−2𝑉𝑉−2 + ⋯

• Such a representation is valid for individual type of loads or aggregate (composite) 
type of loads.

• Different conditions for the coefficients give different models. For example:
i. If only 𝑎𝑎0 and 𝑏𝑏0 are nonzero, and all the coefficients are zero, then,

𝑃𝑃 = 𝑎𝑎0 and 𝑗𝑗 = 𝑏𝑏0  (Constant Power Load) 6
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3. Load Models
ii. If only 𝑎𝑎1 and 𝑏𝑏1 are nonzero, and all the coefficients are zero, then,

𝑃𝑃 = 𝑎𝑎1𝑉𝑉 and 𝑗𝑗 = 𝑏𝑏1𝑉𝑉  (Constant Current Load)
iii. If only 𝑎𝑎2 and 𝑏𝑏2 are nonzero, and all the coefficients are zero, then,

𝑃𝑃 = 𝑎𝑎2𝑉𝑉2 and 𝑗𝑗 = 𝑏𝑏2𝑉𝑉2  (Constant Impedance Load)
• If a load is a combination of the three above mentioned types, we can combine them to find 

a composite expression. For examples, tests and subsequent regression analysis on the data 
show the following models for common load types:

       (a) Air-conditioning load demand (per-unit values):

       (b) Fluorescent lighting:

       (c) Induction motor:

7
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3. Load Models
3.2 Load Model II

• Composite loads, which are assumed to be mixtures of the types as discussed, can be 
represented as:

𝑃𝑃 = 𝑃𝑃𝑛𝑛
𝑉𝑉
𝑉𝑉𝑛𝑛

𝑘𝑘

𝑗𝑗 = 𝑗𝑗𝑛𝑛
𝑉𝑉
𝑉𝑉𝑛𝑛

𝑙𝑙  

where both k and l vary between 0 and 3, Vn is the initial or base value of voltage, Pn is the initial 
or base value of real power, and Qn is the initial or base value of reactive power. When using 
these models, we should be aware of the range of V for the models to be valid.

Some examples of using Load Model II:

• (a) If k = 1 and l = 0, it implies that the load is a constant current type with unity power 
factor.

• (b) If k = l = 2, the load is a constant impedance type.

• (c) If k = 2.5 and l = 2.7, it represents an aluminum reduction plant. This is a simple model and 
can be determined empirically from measurements.

8
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3. Load Models
3.3 Load Model III

• If loads (or demands) are sensitive to frequency, the frequency effects should be included. In 
that case, voltage and frequency dependence are described by the following relationships:

𝑃𝑃(𝑓𝑓,𝑉𝑉) = 𝑃𝑃𝑛𝑛
𝜔𝜔
𝜔𝜔𝑛𝑛

𝛼𝛼 𝑉𝑉
𝑉𝑉𝑛𝑛

𝑘𝑘

𝑗𝑗(𝑓𝑓,𝑉𝑉) = 𝑗𝑗𝑛𝑛
𝜔𝜔
𝜔𝜔𝑛𝑛

𝛽𝛽 𝑉𝑉
𝑉𝑉𝑛𝑛

𝑙𝑙 

where 𝜔𝜔 = 2𝜋𝜋𝑓𝑓, 𝜔𝜔𝑛𝑛 = 2𝜋𝜋𝑓𝑓𝑛𝑛, 𝑓𝑓𝑛𝑛 is the base frequency, and 𝛼𝛼 and 𝛽𝛽 are constant exponents.

• Instead of determining the exponent for this model, it is often a practice to determine the 
four sensitivity coefficients. Knowing these coefficients, the new values for ΔP and ΔQ can be 
determined from Δf and ΔV. All the changes are assumed to be small, thus:

9
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3. Load Models
3.3 Load Model III

• The table shows the sensitivities coefficients 
based on the results of a data survey 
conducted by Electric Power Research 
Institute (EPRI). The values have been 
normalized to apparent power, S.

• Then, P = Pn + ΔP and Q = Qn + ΔQ  for 

          f = fn + Δf and V = Vn + ΔV 

ECpE Department
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Table: Suggested values of sensitivities of real power and 
reactive power to voltage and frequency changes based on 
load survey results.

3.4 Load Model IV
• The model is particularly suitable for modeling uncertainties in aggregate loads at a node knowing the 

demand profiles for a day, a season, or a year.

• Assuming Gaussian distribution for load demand:

𝑃𝑃𝑝𝑝 = 𝑃𝑃𝑛𝑛 + 𝑘𝑘𝑝𝑝𝜎𝜎 , and 𝑗𝑗𝑝𝑝 = 𝑗𝑗𝑛𝑛 + 𝑘𝑘𝑝𝑝𝜎𝜎 

where, 𝑃𝑃_𝑝𝑝 is the power value at which the probability of load exceeding that value is p%, 𝑘𝑘_𝑝𝑝  is the 
coefficient related to p, and σ is the standard deviation of the load. 

• Typically, p of 10% is used in voltage-drop calculations, and p of 50% or mean values of load are used 
for loss calculations. Smaller values of p are used for overload and determination of emergency 
conditions.



4. Distributed Energy Resources (DERs)
• Traditional distribution systems were not designed to accommodate active generation and 

storage. However, with decreasing cost and advances in technology, such devices are being 
deployed in distribution systems. 

• DERs are defined as sources of electric power that are not directly connected to the bulk 
power system but are connected to the distribution system, limited in size to 10 MVA or less.

• DER includes generators of different types and energy storage devices with the ability to 
inject power into the system.

• Generators include rotating induction or synchronous rotating machines driven by burning 
diesel, natural gas, bio gas, propane, or by wind or water flow. The static types of DERs 
include solar photovoltaic (PV) and batteries. 

• The majority of DERs are connected to the system through a power electronic interface:

• For the resources that generate AC power, the converter changes it to DC power, and 
an inverter changes it back to AC power at the system frequency. 

• For the resources that produce DC power, the inverter changes it to AC power at the 
system frequency. 

• The DERs that use a power electronics controller with embedded inverters are called 
inverter-based resources (IBRs). 

11
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Impacts of DERs on Voltage Regulation
• Addition of DERs can impact voltage in 

distribution systems.

• Previously, DERs were not permitted to actively 
regulate voltage. They operated at a fixed power 
factor.

• IEEE 1547 standard revised in 2018 permits DERs 
to regulate voltage by injecting reactive power.

• DERs are divided into Category A and Category B. 

• Category A for the systems with lower 
penetration of DERs.

•  Category B for the systems with higher 
penetration of DERs or system with frequent 
large variations in power output. 

• The required reactive power capabilities of the 
DERs for Category A and Category B are shown in 
the Figure. These requirements apply to DERs for 
continuous operation when the voltage is 0.88 
and 1.1 times the nominal voltage.

12
Fig: Minimum reactive power capability of 

Category A and B DER.

4. Distributed Energy Resources (DERs)
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Control Function Requirements for DERs

• Although constant power factor mode with unity power factor setting is the default 
mode for DER operation unless otherwise specified by the distribution system 
operator, the distribution system operator has to approve active participation of 
DERs in voltage regulation. 

• The 1547 standard requires DERs to have the ability to control voltage, reactive 
power, and real power within the operating region. These control function 
requirements are specified in the Table.

13

4. Distributed Energy Resources (DERs)

Table:  Voltage, reactive power, and real power control function requirements for DER
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Control Function Requirements for DERs

• Control modes are illustrated in the figures as per the IEEE Standard 1547.

14

4. Distributed Energy Resources (DERs)

Fig: Volt-VAr characteristic for DER control
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Control Function Requirements for DERs

• Control modes are illustrated in the figures as per the IEEE Standard 1547.

15

4. Distributed Energy Resources (DERs)

Fig: Watt-VAr characteristic for DER control

ECpE Department



Control Function Requirements for DERs

• Control modes are illustrated in the figures as per the IEEE Standard 1547.

16

4. Distributed Energy Resources (DERs)

Fig: Volt–Watt characteristic for DER control.
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Control Function Requirements for DERs

• Standard 1547 provides suggested values for various set points shown in these 
figures. 

• The DERs will provide the capabilities of mutually exclusive reactive power control 
modes listed in this table and will be capable of initiating any of these modes one 
at a time. 

• DER operator is responsible for implementing changes to settings and mode 
selections upon request by the system operator within a specified time. Other 
control modes mutually agreeable to the DER operator and the system operator 
can also be implemented.

• Irrespective of the type of DER and the selected control mode, DERs supply real 
power and either supply or absorb reactive power. 

• Thus, while considering DER as a load, one must consider its real power and 
reactive power as negative if delivering it, and positive if absorbing it.

17

4. Distributed Energy Resources (DERs)
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5. Power Flow Studies
• Since a typical distribution system is unbalanced due to both design and operation, it is 

imperative that the system's steady-state performance evaluation or analysis be conducted 
in three-phase domain, or to consider each phase separately

• It is unlike transmission systems, where usually single-phase power flow studies are 
conducted while considering the system to be balanced.

• To facilitate distribution system analysis, various models shown in the table are used for the 
components of the system.

18

Components Mathematical Model

Substation Infinite source as a reference bus, where voltage magnitude can 
be controlled using regulators and/or taps on the transformers

Feeders and Laterals Three-phase series impedance and shunt admittance matrices 
for each line section. Shunt admittance matrix is included for 
long underground cable with significant charge currents

Load Complex power (𝑃𝑃𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑗𝑗𝑗𝑗𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎) for each bus i

DER Complex power (𝑃𝑃𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑗𝑗𝑗𝑗𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎) for each bus i
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5. Power Flow Studies

5.1 Line Model
• The above figure shows the schematic of a three- phase line connected between 

buses i and j.

• For simplicity, only the series impedance of the line (𝑍𝑍𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎) is shown.

• 𝑉𝑉𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑉𝑉𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 is the vector of phase a, b, and c voltages at bus i and bus j 
respectively,

• 𝐼𝐼𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 is the vector of currents flowing in phases a, b, and c voltages from bus i to  j 
of the line. 

19

Fig: Schematic of a three-phase line connected between buses i and j
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5. Power Flow Studies

5.1 Line Model
• Then, we have the expressions as,

𝑉𝑉𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑍𝑍𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 ⋅ 𝐼𝐼𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 

𝑉𝑉𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑉𝑉𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑉𝑉𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎

• 𝑍𝑍𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 is a 3 X 3 matrix, which is realized after reducing a fourth-order model of the 
line by Kron’s reduction.

• For a two-phase line, 𝑍𝑍𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 matrix has nonzero entries in the 2 × 2 submatrix 
corresponding to the phases of the line.

• For a single-phase line, it has nonzero entry in the diagonal entry corresponding to 
the phase of the line. 20

Fig: Schematic of a three-phase line connected between buses i and j
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5. Power Flow Studies

5.2 Load and DER Model
Y-Connected:

• For modeling loads and DER (negative load), we consider that the real and reactive 
power for each of the three phases are known separately. 

• For a three-phase Y-connected load, the complex power drawn is shown in the 
Figure. For this load connected at bus i, as shown in the figure, the vector 𝑆𝑆𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 of 
complex power is given by:

𝑺𝑺𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑺𝑺𝑖𝑖𝑎𝑎

𝑺𝑺𝑖𝑖𝑎𝑎

𝑺𝑺𝑖𝑖𝑎𝑎
=

𝑃𝑃𝑖𝑖𝑎𝑎 + 𝑗𝑗𝑗𝑗𝑖𝑖𝑎𝑎

𝑃𝑃𝑖𝑖𝑎𝑎 + 𝑗𝑗𝑗𝑗𝑖𝑖𝑎𝑎

𝑃𝑃𝑖𝑖𝑎𝑎 + 𝑗𝑗𝑗𝑗𝑖𝑖𝑎𝑎 21

Fig: Representation of a three-phase Y-connected Load on bus i
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5. Power Flow Studies
• The vectors of voltages and currents at bus i are given by,

𝑉𝑉𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑉𝑉𝑖𝑖𝑎𝑎

𝑉𝑉𝑖𝑖𝑎𝑎

𝑉𝑉𝑖𝑖𝑎𝑎
 , and 𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 =

𝐼𝐼𝑖𝑖𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎

• Now, consider a matrix operation 𝑈𝑈𝑉𝑉𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎, which gives the following matrix:

𝑈𝑈𝑉𝑉𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑉𝑉𝑖𝑖𝑎𝑎 0 0
0 𝑉𝑉𝑖𝑖𝑎𝑎 0
0 0 𝑉𝑉𝑖𝑖𝑎𝑎

 

Hence,

𝑆𝑆𝑖𝑖𝑎𝑎

𝑆𝑆𝑖𝑖𝑎𝑎

𝑆𝑆𝑖𝑖𝑎𝑎
=

𝑽𝑽𝑖𝑖𝑎𝑎 0 0
0 𝑉𝑉𝑖𝑖𝑎𝑎 0
0 0 𝑉𝑉𝑖𝑖𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎

∗

 

22
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5. Power Flow Studies
And,

𝐼𝐼𝑖𝑖𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎

∗

=
𝑽𝑽𝑖𝑖𝑎𝑎 0 0
0 𝑉𝑉𝑖𝑖𝑎𝑎 0
0 0 𝑉𝑉𝑖𝑖𝑎𝑎

−1 𝑆𝑆𝑖𝑖𝑎𝑎

𝑆𝑆𝑖𝑖𝑎𝑎

𝑆𝑆𝑖𝑖𝑎𝑎

• Note that for two- or single-phase loads, 𝑆𝑆𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎, 𝑉𝑉𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 , and 𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 must be truncated 
by removing the entries for phases that do not exist in the load.

23

Delta- Connected:
• Consider a Δ-connected load as shown in the 

figure.
• A relationship between complex powers, voltages, 

and currents is,

𝑆𝑆𝑖𝑖𝑎𝑎𝑎𝑎

𝑆𝑆𝑖𝑖𝑎𝑎𝑎𝑎

𝑆𝑆𝑖𝑖𝑎𝑎𝑎𝑎
=

𝑉𝑉𝑖𝑖𝑎𝑎𝑎𝑎 0 0
0 𝑉𝑉𝑖𝑖𝑎𝑎𝑎𝑎 0
0 0 𝑉𝑉𝑖𝑖𝑎𝑎𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

∗

 
Fig: Representation of a three-phase 
Δ‐connected load on bus i.
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And,

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

∗

=
𝑉𝑉𝑖𝑖𝑎𝑎𝑎𝑎 0 0

0 𝑉𝑉𝑖𝑖𝑎𝑎𝑎𝑎 0
0 0 𝑉𝑉𝑖𝑖𝑎𝑎𝑎𝑎

−1 𝑆𝑆𝑖𝑖𝑎𝑎𝑎𝑎

𝑆𝑆𝑖𝑖𝑎𝑎𝑎𝑎

𝑆𝑆𝑖𝑖𝑎𝑎𝑎𝑎
  

• Following that, we can compute 𝑰𝑰𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎  using 
Kirchhoff's current law (KCL), 

𝐼𝐼𝑖𝑖𝑎𝑎 = 𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎 − 𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎 = 𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎 − 𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎 = 𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎 − 𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎
Fig: Representation of a three-phase 
Δ‐connected load on bus i.

ECpE Department



5. Power Flow Studies

25

5.3 Computing Currents

• Knowing the load or demand vectors 𝑺𝑺𝒂𝒂𝒂𝒂𝒂𝒂 at each bus, the corresponding current 
vectors 𝑰𝑰𝒂𝒂𝒂𝒂𝒂𝒂 can be found using following equation given the voltage vectors 𝑽𝑽𝒂𝒂𝒂𝒂𝒂𝒂 
at the buses. 

𝐼𝐼𝑖𝑖𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎

∗

=
𝑽𝑽𝑖𝑖𝑎𝑎 0 0
0 𝑉𝑉𝑖𝑖𝑎𝑎 0
0 0 𝑉𝑉𝑖𝑖𝑎𝑎

−1 𝑆𝑆𝑖𝑖𝑎𝑎

𝑆𝑆𝑖𝑖𝑎𝑎

𝑆𝑆𝑖𝑖𝑎𝑎
 

• The above figure shows two three-phase feeders connected between buses i, j, and 
k with respective loads at these buses. 

Fig: Schematic showing line sections and connected loads.
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• 𝑰𝑰𝒊𝒊𝒂𝒂𝒂𝒂𝒂𝒂, 𝑰𝑰𝒋𝒋𝒂𝒂𝒂𝒂𝒂𝒂, and 𝑰𝑰𝒌𝒌𝒂𝒂𝒂𝒂𝒂𝒂 are load current vectors at buses i, j, and k, respectively. 

• 𝑰𝑰𝒊𝒊𝒋𝒋𝒂𝒂𝒂𝒂𝒂𝒂 and 𝑰𝑰𝒋𝒋𝒌𝒌𝒂𝒂𝒂𝒂𝒂𝒂  are current vectors of currents flowing on lines between buses i and 
j, and j and k. 

• 𝑰𝑰𝒉𝒉𝒊𝒊𝒂𝒂𝒂𝒂𝒂𝒂  is vector of currents entering bus i from bus h, and 𝑰𝑰𝒌𝒌𝒌𝒌𝒂𝒂𝒂𝒂𝒂𝒂 is vector of currents 
leaving bus k toward bus l.

Fig: Schematic showing line sections and connected loads.
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• Applying KCL at buses, i, j, and k, we get,

𝐼𝐼ℎ𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐼𝐼𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎

𝐼𝐼𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐼𝐼𝑖𝑖𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎
 

    𝐼𝐼𝑖𝑖𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐼𝐼𝑘𝑘𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐼𝐼𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎

Fig: Schematic showing line sections and connected loads.
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• Similar equations can be written for additional sections in the system. If there are 
additional feeders splitting off of the main feeder, the KCL can be expanded. For 
example, consider a case where two feeders are splitting at bus k as shown in the 
Figure:

• Applying the KCL at bus k gives:
𝐼𝐼𝑖𝑖𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐼𝐼𝑘𝑘𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐼𝐼𝑘𝑘𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐼𝐼𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎

• Again, if some of the feeders are two or single phase, the equations are modified to 
include only the phases that exist for a given line section.

Fig: Feeders splitting at bus k.
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5.4 Power Flow Algorithm
• The Source-Load-Iteration (SLI) method is an 

efficient method for radial distribution system 
power flow analysis.

• Computation is done in per-unit (pu) for ease of 
analysis.

• Conversion of the impedances and loads to pu 
values are required using appropriate base 
values.

Step 1: 
• The voltage at the substation is fixed or 

regulated; therefore, it is known. With substation 
declared as bus 1 of the system, we get

𝑉𝑉1𝑎𝑎

𝑉𝑉1𝑎𝑎

𝑉𝑉1𝑎𝑎
=

1.0∠0∘
1.0∠ − 120∘

1.0∠120∘
 

Fig: Feeders splitting at bus k.
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Step 2: 
• Assume a flat profile for all the other bus voltages and 

set initial values of voltage vectors at all the buses equal 
to the substation bus, that is

𝑉𝑉2
𝑎𝑎𝑎𝑎𝑎𝑎(0) = 𝑉𝑉3

𝑎𝑎𝑎𝑎𝑎𝑎(0) = ⋯ = 𝑉𝑉𝑛𝑛
𝑎𝑎𝑎𝑎𝑎𝑎(0) = 𝑉𝑉1𝑎𝑎𝑎𝑎𝑎𝑎 

Note: (o) in the superscript is the iteration count, and 𝑛𝑛 is 
the total number of buses in the system.

Step 3: 

• Find the current vectors for all the buses that have loads 
connected to them using:

Fig: Feeders splitting at bus k.

𝑰𝑰𝑖𝑖
𝒂𝒂𝒂𝒂𝒂𝒂(𝒎𝒎) =

𝑰𝑰𝑖𝑖
𝒂𝒂(𝑠𝑠)

𝑰𝑰𝑖𝑖
𝒂𝒂(𝑠𝑠)

𝑰𝑰𝑖𝑖
𝑎𝑎(𝑠𝑠)

∗

=
𝑽𝑽𝑖𝑖
𝒂𝒂(𝑠𝑠) 0 0

0 𝑽𝑽𝑖𝑖
𝒂𝒂(𝑠𝑠) 0

0 0 𝑽𝑽𝑖𝑖
c(𝑠𝑠)

−1
𝑺𝑺𝑖𝑖𝑎𝑎

𝑺𝑺𝑖𝑖𝑎𝑎

𝑺𝑺𝑖𝑖𝑎𝑎
; 𝑖𝑖 = 2,3, … ,𝑛𝑛 

Note: m in the superscript is the iteration count, and it should not be confused with bus number m used in 
the previous section. For DERs, determine 𝑃𝑃i𝑎𝑎𝑎𝑎𝑎𝑎  and 𝑗𝑗i𝑎𝑎𝑎𝑎𝑎𝑎  corresponding to the voltage at bus i and the 
selected control mode while considering the reactive power capability.
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Step 4: 

• Find 𝑰𝑰𝑖𝑖𝑘𝑘
𝒂𝒂bc(𝑠𝑠) for each feeder section j-k (section between bus j and bus k) starting from the 

bus at the edge of the system and sequentially moving toward the source.

•  If the system has multiple branches emanating from the main feeder, this must be done for 
all branches starting from the bus at the edge.

Step 5: 

• Determine the voltage drop in each feeder section by proceeding from source to load using:

𝑽𝑽𝑖𝑖𝑖𝑖
𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠) = 𝒁𝒁𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 ⋅ 𝑰𝑰𝑖𝑖𝑖𝑖

𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠) 

• To determine 𝑽𝑽𝑖𝑖
𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠+1), we start from bus 1 (or source) with known voltages and move 

toward the loads to compute the bus voltages sequentially starting with bus 2 ,

𝑽𝑽2
𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠+1) = 𝑉𝑉1𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑉𝑉12

𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠) 
• For all other buses,

𝑽𝑽𝑖𝑖
𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠+1) = 𝑽𝑽𝑖𝑖

𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠+1) − 𝑽𝑽𝑖𝑖𝑖𝑖
𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠), 𝑗𝑗 = 3 to 𝑛𝑛, 𝑖𝑖 = 2 to 𝑛𝑛 − 1, and 𝑗𝑗 < 𝑖𝑖. 
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Step 6: 

• Check for the tolerance level, which is the difference between voltages in two 
successive iterations for every bus and for all three phases at each bus.

Δ𝑽𝑽𝑖𝑖
𝒂𝒂𝒂𝒂𝒂𝒂(𝑠𝑠+1) = 𝑽𝑽𝑖𝑖

𝒂𝒂𝒂𝒂𝒂𝒂(𝒎𝒎+𝟏𝟏) − 𝑽𝑽𝑖𝑖
𝒂𝒂𝒂𝒂𝒂𝒂(𝒎𝒎) , 𝑖𝑖 = 2 to 𝑛𝑛 

• If all the elements of Δ𝑽𝑽𝑖𝑖
𝒂𝒂𝒂𝒂𝒂𝒂(𝑠𝑠+1) are less than ε, which is an arbitrarily selected 

small number for tolerance, for all the buses, the power flow converges. 

• Typically, a value of 0.001 for ε gives good results. If convergence is not achieved, 
repeat steps 3–6.
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Maintaining proper voltage in the distribution system is very important. There are numerous 
methods to improve and control the voltage of primary distribution systems:

1. Use of load tap changing (LTC) transformers.

2. Application of voltage regulators in the distribution substation as well as on the feeders.

3. Application of shunt (or series) capacitors on the feeders or at the distribution substation.

4. Balancing of loads on primary feeders.

5. Increasing feeder conductor size.

6. Increasing primary voltage level.

7. Changing feeder sections from single phase to three phase.

8. Transferring of loads from existing feeders to new feeders.

9. Installation of new substations and primary feeders.

While several of these options are usually considered during the planning stages, LTCs, regulators, 
and capacitors provide the best means of achieving good voltage regulation during the 
operational stages on a continuous basis.
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6.1 Voltage Regulation Definition:

• Voltage regulation is the voltage difference between the two ends of a line defined 
as percentage of the receiving end or downstream voltage. 

• Mathematically:

where 𝑉𝑉𝑠𝑠 is the magnitude of the sending-end voltage, and 𝑉𝑉𝑟𝑟 is the magnitude of the 
receiving-end voltage.
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6.2 Approximate Method for Voltage Regulation:

• From the figure of a feeder on the right,
𝑉𝑉𝑠𝑠 = 𝑉𝑉𝑟𝑟 + 𝐼𝐼(𝑅𝑅 + 𝑗𝑗𝑗𝑗)

• And the voltage drop on the feeder is,
𝑉𝑉𝑠𝑠 − 𝑉𝑉𝑟𝑟 = 𝐼𝐼(𝑅𝑅 + 𝑗𝑗𝑗𝑗)

• A phasor diagram for this equation with the 
condition that current lags voltage by an angle 
𝛿𝛿 is shown in the figure.

• With 𝑽𝑽𝒓𝒓  as the reference voltage or 𝑽𝑽𝒓𝒓 =
𝑉𝑉𝑟𝑟∠0∘,𝑽𝑽𝑺𝑺 = 𝑉𝑉𝑠𝑠∠𝛿𝛿∘, and 𝑰𝑰 = 𝐼𝐼∠ − ∅∘, we get:

𝑉𝑉𝑠𝑠cos 𝛿𝛿 + 𝑗𝑗𝑉𝑉𝑠𝑠sin 𝛿𝛿 − 𝑉𝑉𝑟𝑟 = 𝐼𝐼(𝑅𝑅cos∅ + 𝑗𝑗sin∅) + 𝑗𝑗𝐼𝐼(𝑗𝑗cos∅ − 𝑅𝑅sin∅)

Fig: Phasor Diagram

• Typically, in distribution systems, R is approximately equal to X, and δ is very small. 
Hence, we can consider cosδ ≈ 1 and sinδ ≈ 0, which makes the imaginary go to 
zero, and the real part giving voltage drop per mile becomes:

𝑉𝑉𝑠𝑠 − 𝑉𝑉𝑟𝑟 = 𝐼𝐼(𝑅𝑅cos∅ + 𝑗𝑗sin∅)

Fig: A feeder of resistance R and reactance X.
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• And, the equation of voltage regulation becomes,

% Voltage Regulation =
𝐼𝐼(𝑅𝑅cos∅ + 𝑗𝑗sin∅)

𝑉𝑉𝑟𝑟
× 100

• Now, if we consider a load 𝑺𝑺 = 𝑃𝑃 + 𝑗𝑗𝑗𝑗 connected at the receiving end, we can 
compute the corresponding current

𝑰𝑰 = 𝑃𝑃+𝑖𝑖𝑗𝑗
𝑽𝑽𝑟𝑟

∗
 

And,

𝐼𝐼 = 𝐵𝐵
𝑉𝑉𝑟𝑟

 

which gives

% Voltage Regulation =
𝑆𝑆(𝑅𝑅cos∅ + 𝑗𝑗sin∅)

𝑉𝑉𝑟𝑟2
× 100 =

(𝑅𝑅𝑃𝑃 + 𝑗𝑗𝑗𝑗)
𝑉𝑉𝑟𝑟2

× 100

• In practice, the approximate voltage drop is an acceptable measure since the error 
between the exact and approximate values is negligible.
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• In distribution systems, usually Vs, the voltage at the substation, is controlled and 
held constant for varying loading conditions, which implies that the voltage drop 
and hence Vr at other buses changes. 

• Obtaining Vr at a given bus for the given impedance and load values requires 
iterative solution using power flow method

Example:

Consider a 12.47-kV feeder with three point loads 
as shown in Figure 4.13. The loads are

S2 = 2.5 MVA with 0.92 lagging power factor,

S3 = 3.0 MVA with 0.90 lagging power factor, and

S4 = 2.0 MVA with 0.95 lagging power factor.

The given impedance of the feeder, z, is (0.258 + j 
0.6644) Ω/mi or 0.7127∠68.78° Ω/mi. Find the 
percent voltage drop at bus 4 of the primary feeder 
for the stipulated load conditions using the 
approximate method.

Fig: A single-phase feeder supplying 
three point loads.
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Solution:

• First, compute impedances, Z, of the line sections by multiplying z by l, which is the 
length of the feeder sections, or:

• Next, compute the line-to-neutral voltage at bus 1 for the given line-to-line voltage for 
the feeder, or:
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• Assume this voltage to be the reference voltage, or V1 = 7200 ∠ 0°. We also assume 
that the voltage at each bus remains at 7200 ∠ 0°, and we compute the load currents 
for each bus, or:

• Now, compute the currents in the feeder sections using KCL:
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• Compute voltage drops in each feeder section:

• Thus, the total voltage drop in the entire feeder is the sum of the voltage drops in 
individual sections, or:
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• Therefore, the percent voltage regulation is

• Verify the accuracy on this result by finding the exact solution for this problem by 
determining voltages with power flow using the source-to-load iterative method. You 
will find that the error is minimal in this case due to the power factors of all three 
loads being close to each other.
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6.3 Voltage Drop on Radial Feeders with Uniformly Distributed Load

• In the previous section, we considered spot loads connected at the buses. 

• In this section, we consider a case where the loads are distributed uniformly across 
the length of the feeder in a rectangular service area. 

• Also, we generalize it for a three-phase feeder, assuming that all the three phases 
have identical values of resistance and reactance. 

• Consider the current density to be k A/mile for the feeder shown in the Figure. 
With l as the length of the feeder, the current at the sending end is 𝐼𝐼𝑠𝑠 = kl, and the 
current at the receiving end is 0.

Fig: Feeder with load distributed uniformly 
in a rectangular service area
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• Fig (b) shows the plot of the magnitude of a 
current assuming that the current throughout 
the feeder has the same phase angle.

• From this figure, we get

𝐼𝐼𝑥𝑥 = 𝐼𝐼𝑠𝑠 − 𝑘𝑘𝑘𝑘

or,

𝐼𝐼𝑥𝑥 = 𝐼𝐼𝑠𝑠 −
𝐼𝐼𝑠𝑠
𝑙𝑙 𝑘𝑘

𝐼𝐼𝑥𝑥 = 𝐼𝐼𝑠𝑠 1 −
𝑘𝑘
𝑙𝑙

• Consider a differential element of the feeder 
of length 𝑑𝑑𝑘𝑘  at a distance 𝑘𝑘 . With 𝑧𝑧 
ohms/mile as impedance of the feeder, the 
differential voltage across 𝑑𝑑𝑘𝑘 is,

𝑑𝑑𝑉𝑉𝐷𝐷 = 𝐼𝐼𝑥𝑥𝑧𝑧𝑑𝑑𝑘𝑘 = 𝐼𝐼𝑠𝑠 1 − 𝑥𝑥
𝑙𝑙
𝑧𝑧𝑑𝑑𝑘𝑘 

Fig (a): Feeder with load distributed 
uniformly in a rectangular service 

area

Fig (b): Current on the feeder
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• Therefore, the voltage drop on the feeder is

𝑉𝑉𝐷𝐷𝑙𝑙 = �
0

𝑙𝑙
𝐼𝐼𝑠𝑠 1 −

𝑘𝑘
𝑙𝑙
𝑧𝑧𝑑𝑑𝑘𝑘

=
1
2
𝐼𝐼𝑠𝑠𝑧𝑧𝑙𝑙 V

• We can also compute losses on the feeder by 
considering differential power loss with 𝑟𝑟 
ohms/mile as the resistance of the feeder.

𝑑𝑑𝑃𝑃𝑓𝑓𝐵𝐵𝑥𝑥 = 𝐼𝐼𝑥𝑥2𝑟𝑟𝑑𝑑𝑘𝑘

= 𝐼𝐼𝑠𝑠2 1 −
𝑘𝑘
𝑙𝑙

2
𝑟𝑟𝑑𝑑𝑘𝑘

Then, the power loss per phase is

𝑃𝑃𝑓𝑓𝐵𝐵 = �
0

𝑙𝑙
𝐼𝐼𝑠𝑠2 1 −

𝑘𝑘
𝑙𝑙

2
𝑟𝑟𝑑𝑑𝑘𝑘

=
1
3 𝐼𝐼𝑠𝑠

2𝑟𝑟𝑙𝑙

Fig (a): Feeder with load distributed 
uniformly in a rectangular service 

area

Fig (b): Current on the feeder
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• The total power loss for the three phases is

𝑃𝑃𝑓𝑓𝐵𝐵3∅ = 𝐼𝐼𝑠𝑠2𝑟𝑟𝑙𝑙

• The results shown above are useful for planning studies because while planning we 
do not have the system topology and actual load values available. All we have are 
projected values.

• These approximations are also useful in optimizing operating scenarios where 
precise calculations may slow down the process of obtaining the final solution. In 
those cases, approximation can be used to narrow the solution space, and precise 
calculations can be implemented on a smaller solution space, thus, speeding the 
overall computation in search for the optimal solution.
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6.4 Voltage Drop on Radial Feeders Serving a Triangular Area

• This section, we consider a case  in which the 
service area of a feeder is triangular with load 
distributed uniformly in the service area.

• Let 𝑎𝑎 be the current density in amperes per 
square mile. 

𝑎𝑎 = 2𝐼𝐼𝑠𝑠
𝑙𝑙ℎ

 

• Next, we get an expression for current 𝐼𝐼𝑋𝑋 at 
distance 𝑘𝑘.

𝐼𝐼𝑥𝑥 = 𝐼𝐼𝑠𝑠 − 𝑎𝑎 ℎ′𝑥𝑥
2

 

Substituting the value of 𝑎𝑎 gives

𝐼𝐼𝑠𝑠 − 𝐼𝐼𝑠𝑠
2
𝑙𝑙ℎ
ℎ′𝑥𝑥
2

 

Fig: Feeder serving a triangular area 
with fixed load density
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Note that ℎ
′

ℎ
= 𝑥𝑥

𝑙𝑙
. Substituting this ,

𝐼𝐼𝑥𝑥 = 𝐼𝐼𝑠𝑠 − 𝐼𝐼𝑠𝑠
𝑥𝑥2

𝑙𝑙2
 

• Again, consider a differential element 𝑑𝑑𝑘𝑘 and 
write an expression for the differential voltage 
drop

𝑑𝑑𝑉𝑉𝐷𝐷 = 𝐼𝐼𝑥𝑥𝑧𝑧𝑑𝑑𝑘𝑘 

• Further, the voltage drop across the feeder is

𝑉𝑉𝐷𝐷𝑙𝑙 = ∫0
𝑙𝑙 𝐼𝐼𝑠𝑠 1 − 𝑥𝑥2

𝑙𝑙2
𝑧𝑧𝑑𝑑𝑘𝑘 

or

𝑉𝑉𝐷𝐷𝑙𝑙 = 2
3
𝐼𝐼𝑠𝑠𝑧𝑧𝑙𝑙 

Fig: Feeder serving a triangular area 
with fixed load density
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Similarly, we can find power loss, which is

𝑑𝑑𝑃𝑃𝑓𝑓𝐵𝐵𝑥𝑥 = 𝐼𝐼𝑥𝑥2𝑟𝑟𝑑𝑑𝑘𝑘

= 𝐼𝐼𝑠𝑠2 1 −
𝑘𝑘2

𝑙𝑙2

2

𝑟𝑟𝑑𝑑𝑘𝑘

Then, the power loss per phase is

𝑃𝑃𝑓𝑓𝐵𝐵  = �
0

𝑙𝑙
𝐼𝐼𝐵𝐵2 1 −

𝑘𝑘2

𝑙𝑙2

2

𝑟𝑟𝑑𝑑𝑘𝑘

 =
8

15 𝐼𝐼𝐵𝐵
2𝑟𝑟𝑙𝑙

And,

𝑃𝑃𝑓𝑓𝐵𝐵3∅ =
8
5 𝐼𝐼𝐵𝐵

2𝑟𝑟𝑙𝑙

Fig: Feeder serving a triangular area 
with fixed load density
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• The standard procedure for fault calculation in power systems requires 
determining Thevenin's equivalent for positive-, negative-, and zero-sequence 
networks at the point of fault.

• The sequence networks are connected to each other based on the type of fault. 

• However, decoupling of circuits in the sequence domain works only under the 
conditions of symmetry. 

• For example, consider a three-phase feeder with impedance matrix in the phase 
domain as shown below,

𝑍𝑍𝑎𝑎𝑎𝑎 𝑍𝑍𝑎𝑎𝑎𝑎 𝑍𝑍𝑎𝑎𝑎𝑎
𝑍𝑍𝑎𝑎𝑎𝑎 𝑍𝑍𝑎𝑎𝑎𝑎 𝑍𝑍𝑎𝑎𝑎𝑎
𝑍𝑍𝑎𝑎𝑎𝑎 𝑍𝑍𝑎𝑎𝑎𝑎 𝑍𝑍𝑎𝑎𝑎𝑎

 

• The conditions of symmetry require that,

𝑍𝑍𝑎𝑎𝑎𝑎 = 𝑍𝑍𝑎𝑎𝑎𝑎 = 𝑍𝑍𝑎𝑎𝑎𝑎, and 𝑍𝑍𝑎𝑎𝑎𝑎 = 𝑍𝑍𝑎𝑎𝑎𝑎 = 𝑍𝑍𝑎𝑎𝑎𝑎
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• While for transmission lines these are satisfied with transposition, they are not 
feasible for distribution feeders. Distribution feeders are rarely transposed and also 
can be of two or one phase in addition to three phases.

• Since single- and two-phase feeders do not have models in the sequence domain, 
symmetrical component-based analysis is not applicable to them. Also, for 
three-phase part of the system, symmetrical components do not provide any 
advantage because the sequence impedance matrix is not diagonal.

• Hence, positive-, negative-, and zero-sequence impedances cannot be decoupled 
from one another.

• However, we can implement a solution technique in phase domain to determine 
fault currents in distribution systems. We initially consider a radial distribution 
system connected to the bulk power system with no additional sources in the 
system. 

50

7. Fault Calculation

ECpE Department



• A general distribution feeder connected to the substation bus with multiple feeder sections as 
shown in the Figure. While the main feeder is a three-phase feeder, the laterals can be three, 
two, or single phase. Each feeder section is modeled by its impedance matrix.

• For illustration, we are considering delta-wye-grounded connection for the transformer, but 
the method will work for other configurations too.

• The system in the figure represented in the oval represents the entire power system 
upstream of the transformer.

• This system can be represented by a Thevenin equivalent impedance matrix and a voltage 
source vector for the three phases.
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Fig: An example Distribution System
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• The equivalent voltage source 𝑉𝑉𝑠𝑠 is considered balanced with 
1 pu magnitude, i.e.

𝑽𝑽𝑠𝑠𝑎𝑎

𝑽𝑽𝑠𝑠𝑎𝑎
𝑽𝑽𝑠𝑠𝑎𝑎

=
1.0∠0∘

1.0∠ − 120∘
1.0∠120∘

 , where subscript s is the source.

• All the prefault load currents are considered to be 0 with the 
assumption that load currents are much smaller compared to 
the fault current.
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Fig: An example Distribution System

• Directly determining the Thevenin equivalent matrix in the phase domain is difficult. An 
indirect approach is considered due to the difficulty.

• Utilities usually have information on equivalent positive-, negative-, and zero-sequence 
impedance values at different buses in the transmission system.

• The values can also be computed using the approach discussed in Section 2 of the slide 
(Modeling of Source Impedance).

• The values are denoted as 𝑍𝑍1𝑠𝑠𝑠𝑠, 𝑍𝑍2𝑠𝑠𝑠𝑠, and 𝑍𝑍0𝑠𝑠𝑠𝑠 at bus m.

• The zero-sequence impedance value only includes the impedance of the transformer due to 
the selected transformer connection.
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• Delta/wye-grounded transformers create an open 
circuit in the zero-sequence circuit, where current 
flows through the transformer only on the 
wye-grounded side.

• The transmission system is assumed to be fully 
balanced. As a result, the sequence networks are 
decoupled.
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Fig: An example Distribution System

• The impedance matrix of the system in the sequence domain can be written as 
follows: 

𝒁𝒁0𝑠𝑠𝑠𝑠 0 0
0 𝒁𝒁1𝑠𝑠𝑠𝑠 0
0 0 𝒁𝒁2𝑠𝑠𝑠𝑠

• Now, we use transformation to convert this matrix to phase domain

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠
=

1 1 1
1 𝐚𝐚2 𝐚𝐚
1 𝐚𝐚 𝐚𝐚2

𝒁𝒁0𝑠𝑠𝑠𝑠 0 0
0 𝑍𝑍1𝑠𝑠𝑠𝑠 0
0 0 𝒁𝒁2𝑠𝑠𝑠𝑠

1
3

1 1 1
1 𝐚𝐚 𝐚𝐚2
1 𝐚𝐚2 𝐚𝐚
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where a is a complex number equal to 1∠120o

• Let bus i be the candidate bus for faults.

• Since all the feeder sections between the substation 
bus (bus m) and the faulted bus are in series, we can 
add their impedance matrices to compute the 
equivalent impedance matrix. 

• All the feeder sections not in the path from the 
substation to the faulted bus do not influence the fault 
current and thus are not included in the calculations. 

• Consider this matrix to be:
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Fig: An example Distribution System

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖
 

ECpE Department



• Now, this matrix is added to the system impedance matrix to get the impedance 
matrix from the equivalent source to the faulted bus, 

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖
=

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠
+

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖
 

Note: This summation can only be done if both matrices on the right-hand side are in 
per unit, or impedances are referred to the low-voltage side of the transformer due to 
different voltage levels of the distribution system and the bulk power system.
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• For a three-phase fault at bus i, current will flow from the substation to bus i. 

• Since there is no additional source, no other currents will flow. 

• Also, we assume that the fault impedance is 0. 

• If the fault is a high impedance fault, these assumptions will not be fully valid. The 
Figure above shows the conditions for a three-phase fault.

• The fault currents are, 𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎
 .
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7.2 Three – Phase Fault

Fig: Three – phase fault at bus i
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• The equation from the voltage drop from the source to bus i is,

𝑉𝑉𝑠𝑠𝑎𝑎 − 𝑉𝑉𝑖𝑖𝑎𝑎

𝑉𝑉𝑠𝑠𝑎𝑎 − 𝑉𝑉𝑖𝑖𝑎𝑎

𝑉𝑉𝑠𝑠𝑎𝑎 − 𝑉𝑉𝑖𝑖𝑎𝑎
=

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎
 

• For a solidly grounded fault, all the voltages at bus i will be 0.

• Applying this condition and substituting values of the source bus 
voltage, we get,

1.0∠0∘ − 0
1.0∠ − 120∘ − 0

1.0∠120∘ − 0
=

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

• In the next step, we get,

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎
=

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

−1
1.0∠0∘

1.0∠ − 120∘
1.0∠120∘

57

7.2 Three – Phase Fault

Fig: Three – phase fault at bus i
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• If the system has additional sources, they can be applied one at a time while 
removing the equivalent source at the substation.

• Source impedance matrix needs to be known and the equivalent impedance matrix 
from each source to bus i must be determined.

• Voltages at the source terminal are required for the calculations.

• For inverter-based sources, their characteristics under faults and operating rules 
must be known.

• Some inverter-based sources are automatically disconnected during fault, and most 
are adjusted to produce a smaller current by adjusting the impedance of inverter, 
which makes fault calculations challenging.

• However, if we can compute fault currents for all the sources one at a time, all the 
fault currents can be added using superposition to compute the cumulative current. 

• Since the circuit is linear, superposition can be applied without affecting the results.
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• For a fault at bus i, current will flow from the substation to 
bus i on the two faulted phases and no current on the third 
phase. As shown in the Figure, a fault between phases b 
and c is considered. 

• The currents for this fault are

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
0
𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

• The voltage drop equation from the source to bus 𝑖𝑖 is:

1.0∠0∘ − 𝑉𝑉𝑖𝑖𝑎𝑎

1.0∠ − 120∘ − 0
1.0∠120∘ − 0

=
𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑖𝑖

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠

0
𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

• Discard the first row and the first column and write the 
equations in a reduced form, as,

1.0∠ − 120∘
1.0∠120∘ =

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖
𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎
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• Further,

𝑰𝑰𝑖𝑖𝑎𝑎𝑎𝑎

𝑰𝑰𝑖𝑖𝑎𝑎𝑎𝑎
=

𝒁𝒁𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝒁𝒁𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝒁𝒁𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝒁𝒁𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

−1
1.0∠ − 120∘

1.0∠120∘

• The same approach can be used for faults on any 
other two phases.
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• For a fault at bus i, current will flow from the 
substation to bus i on the faulted phase and no 
current on the other two phases.

• For illustration, we consider a fault on phase a as 
shown in the figure.

• The currents for this fault are

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎
0
0

• We can write an equation for voltage drop from the 
equivalent source to bus 𝑖𝑖 as,

1.0∠0∘ − 0
1.0∠ − 120∘ − 𝑉𝑉𝑖𝑖𝑎𝑎

1.0∠120∘ − 𝑉𝑉𝑖𝑖𝑎𝑎
=

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎
0
0
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• Discard the last two equations and keep only the 
first one, or

1.0∠0∘ = 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

Therefore,

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎 =
1.0∠0∘

𝑍𝑍𝑎𝑎𝑎𝑎s𝑖𝑖

• Again, the same approach can be used for faults on 
other phases.
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• For an LL fault at bus i, current will flow from the 
substation to bus i on the faulted phases and no 
current on the third phases. 

• For illustration, we consider a fault between phase b 
and c as shown in the figure.

• For this fault, the currents will not flow to the 
ground but return through the second phase, as,

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎 = −𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

• Hence, the currents for this fault are:

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
0
𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

−𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎
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• Also, the voltages at bus 𝑖𝑖 for the faulted phases are 
equal, 

𝑉𝑉𝑖𝑖𝑎𝑎 = 𝑉𝑉𝑖𝑖𝑎𝑎

• Therefore, the equation for voltage drop from the 
equivalent source to bus 𝑖𝑖 is

1.0∠0∘ − 𝑉𝑉𝑖𝑖𝑎𝑎

1.0∠ − 120∘ − 𝑉𝑉𝑖𝑖𝑎𝑎

1.0∠120∘ − 𝑉𝑉𝑖𝑖𝑎𝑎
=

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

0
𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

−𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

• Expanding the last two equations gives

1.0∠ − 120∘ − 𝑉𝑉𝑖𝑖𝑎𝑎 = 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎 − 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎 = 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 − 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

And.

1.0∠120∘ − 𝑉𝑉𝑖𝑖𝑎𝑎 = 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎 − 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎 = 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 − 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎
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• Rearranging and expressing in the matrix form gives

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

𝑉𝑉𝑖𝑖𝑎𝑎
=

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 − 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 1
𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 − 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 1

−1
1.0∠ − 120∘

1.0∠120∘

• Solving it gives both 𝑰𝑰𝑖𝑖𝑎𝑎𝑎𝑎 and 𝑽𝑽𝒊𝒊𝒂𝒂 as well as 𝑰𝑰𝒊𝒊𝒂𝒂𝒄𝒄 and 𝑽𝑽𝒊𝒊𝒂𝒂.
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• Although symmetrical component-based fault analysis does not work well for 
distribution systems, it can be used to get approximate results only for the part of 
the system that has all the three phases.

• The first step is to determine the three-phase impedance matrix from the 
substation bus (bus m) to the faulted bus (bus i).

• The general equation for this impedance matrix is given by,

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

• The next step is to transform this matrix to sequence domain, which gives:

𝑍𝑍00𝑠𝑠𝑖𝑖 𝑍𝑍01𝑠𝑠𝑖𝑖 𝑍𝑍02𝑠𝑠𝑖𝑖

𝑍𝑍10𝑠𝑠𝑖𝑖 𝑍𝑍11𝑠𝑠𝑖𝑖 𝑍𝑍12𝑠𝑠𝑖𝑖

𝑍𝑍20𝑠𝑠𝑖𝑖 𝑍𝑍21𝑠𝑠𝑖𝑖 𝑍𝑍22𝑠𝑠𝑖𝑖
=

1
3

1 1 1
1 𝑎𝑎 𝑎𝑎2
1 𝑎𝑎2 𝑎𝑎

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 𝑍𝑍𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖

1 1 1
1 𝑎𝑎2 𝑎𝑎
1 𝑎𝑎 𝑎𝑎2
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• The resulting sequence impedance matrix is not diagonal, but for approximation, 
we discard the off-diagonal terms.

• The diagonal entries are considered as the zero-, positive-, and negative-sequence 
impedances of the distribution system from the substation bus to the point of fault.

• To determine the pre-fault circuits in the sequence domain, we add the respective 
impedances from the equivalent source to the substation bus and the impedances 
from the substation bus to the faulted bus.

• All impedances must be converted to per unit before adding them.

• The voltage source in the phase domain is balanced, providing a source only for the 
positive sequence.

• Hence, we can determine the three pre-fault sequence domain circuits as shown in 
the figure (next slide).
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7.6 Symmetrical Component-based Fault Analysis

Fig: Pre-fault positive-, negative-, and zero-sequence equivalent circuits with respect to bus i.

• Note that in the figure,

𝑍𝑍1𝑠𝑠𝑖𝑖 = 𝑍𝑍1𝑠𝑠𝑠𝑠 + 𝑍𝑍11𝑠𝑠𝑖𝑖

𝑍𝑍2𝑠𝑠𝑖𝑖 = 𝑍𝑍2𝑠𝑠𝑠𝑠 + 𝑍𝑍22𝑠𝑠𝑖𝑖

𝑍𝑍0𝑠𝑠𝑖𝑖 = 𝑍𝑍0𝑠𝑠𝑠𝑠 + 𝑍𝑍00𝑠𝑠𝑖𝑖
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• For a three-phase fault, the system stays 
balanced, and the negative- and the 
zero-sequence currents are 0. 

• To compute the positive-sequence current, 
we create a short circuit across the 
positive-sequence circuit as shown in Figure.

• From this circuit,

𝐼𝐼1𝑎𝑎 =
1.0∠0∘

𝑍𝑍1𝑠𝑠𝑖𝑖

• Now, we convert them to the phase domain,

𝑰𝑰𝑖𝑖𝒂𝒂𝑎𝑎

𝑰𝑰𝒊𝒊𝒂𝒂𝒄𝒄

𝑰𝑰𝒊𝒊𝒂𝒂𝒄𝒄
=

1 1 1
1 𝒂𝒂2 𝒂𝒂
1 𝒂𝒂 𝒂𝒂2

0
𝑰𝑰1𝒄𝒄
0

=
𝑰𝑰1𝑎𝑎

𝑰𝑰1𝒄𝒄∠ − 120∘

𝑰𝑰1𝑎𝑎∠120∘
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The conditions for this fault in phase domain are

 𝑰𝑰𝑖𝑖𝑎𝑎𝑎𝑎 = 0 and 𝑽𝑽𝑖𝑖𝑎𝑎 = 𝑽𝑽𝑖𝑖𝒂𝒂.

Transforming these conditions to sequence domain 
gives,

𝐼𝐼0𝑎𝑎 + 𝐼𝐼1𝑎𝑎 + 𝐼𝐼2𝑎𝑎 = 0

And,

𝑉𝑉0𝑎𝑎 + 𝑎𝑎𝑉𝑉1𝑎𝑎 + 𝑎𝑎2𝑉𝑉2𝑎𝑎 = 𝑉𝑉0𝑎𝑎 + 𝑎𝑎2𝑉𝑉1𝑎𝑎 + 𝑎𝑎𝑉𝑉2𝑎𝑎

Simplifying gives,

𝑎𝑎 − 𝑎𝑎2 𝑉𝑉1𝑎𝑎 = 𝑎𝑎 − 𝑎𝑎2 𝑉𝑉2𝑎𝑎

or,

𝑉𝑉1𝑎𝑎 = 𝑉𝑉2𝑎𝑎
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Also,

𝑉𝑉𝑖𝑖𝑎𝑎 = 𝑉𝑉0𝑎𝑎 + 𝑎𝑎𝑉𝑉1𝑎𝑎 + 𝑎𝑎2𝑉𝑉2𝑎𝑎 = 0

or,

𝑉𝑉0𝑎𝑎 + 𝑎𝑎 + 𝑎𝑎2 𝑉𝑉1𝑎𝑎 = 𝑉𝑉0𝑎𝑎 − 𝑉𝑉1𝑎𝑎 = 0

Therefore,

𝑉𝑉0𝑎𝑎 = 𝑉𝑉1𝑎𝑎 = 𝑉𝑉2𝑎𝑎

• We use conditions given by: 
𝑍𝑍1𝑠𝑠𝑖𝑖 = 𝑍𝑍1𝑠𝑠𝑠𝑠 + 𝑍𝑍11𝑠𝑠𝑖𝑖

𝑍𝑍2𝑠𝑠𝑖𝑖 = 𝑍𝑍2𝑠𝑠𝑠𝑠 + 𝑍𝑍22𝑠𝑠𝑖𝑖

𝑍𝑍0𝑠𝑠𝑖𝑖 = 𝑍𝑍0𝑠𝑠𝑠𝑠 + 𝑍𝑍00𝑠𝑠𝑖𝑖

and 𝑉𝑉0𝑎𝑎 = 𝑉𝑉1𝑎𝑎 = 𝑉𝑉2𝑎𝑎 , to create the circuit in sequence 
domain shown in the Figure .

𝐼𝐼1𝑎𝑎 = 1.0∠0∘

𝑍𝑍1𝑠𝑠𝑠𝑠+ 𝑍𝑍2𝑠𝑠𝑠𝑠∥𝑍𝑍0𝑠𝑠𝑠𝑠
= 1.0∠0∘

𝑍𝑍1𝑠𝑠𝑠𝑠+
𝑍𝑍2
𝑠𝑠𝑠𝑠+𝑍𝑍0

𝑠𝑠𝑠𝑠

𝑍𝑍2
𝑠𝑠𝑠𝑠𝑍𝑍0

𝑠𝑠𝑠𝑠
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𝐼𝐼2𝑎𝑎 = −𝐼𝐼1𝑎𝑎
𝑍𝑍0𝑠𝑠𝑠𝑠

𝑍𝑍2𝑠𝑠𝑠𝑠+𝑍𝑍0𝑠𝑠𝑠𝑠
 

and,

𝐼𝐼0𝑎𝑎 = −𝐼𝐼1𝑎𝑎
𝑍𝑍2𝑠𝑠𝑠𝑠

𝑍𝑍2𝑠𝑠𝑠𝑠+𝑍𝑍0𝑠𝑠𝑠𝑠
 

The sequence currents and voltages can be 
transformed to the phase domain using the relevant 
equations.
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• The conditions for this fault in phase domain are 
𝑰𝑰𝑖𝑖𝒂𝒂𝒄𝒄 = 𝑰𝑰𝒊𝒊𝒂𝒂𝒄𝒄 = 0 and 𝑽𝑽𝑖𝑖𝒂𝒂 = 0. 

• Transforming these conditions to sequence 
domain gives

𝐼𝐼0𝑎𝑎

𝐼𝐼1𝑎𝑎

𝐼𝐼2𝑎𝑎
=

1
3

1 1 1
1 𝑎𝑎 𝑎𝑎2
1 𝑎𝑎2 𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎
0
0

=
1
3

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

or,

𝐼𝐼0𝑎𝑎 = 𝐼𝐼1𝑎𝑎 = 𝐼𝐼2𝑎𝑎 =
1
3 𝐼𝐼𝑖𝑖

𝑎𝑎𝑎𝑎

Also,
𝑉𝑉𝑖𝑖𝑎𝑎 = 𝑉𝑉0𝑎𝑎 + 𝑉𝑉1𝑎𝑎 + 𝑉𝑉2𝑎𝑎 = 0

• Based on the above two equations, we can create 
a circuit shown in the Figure.
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7.6.3 SLG Fault

Fig: SLG fault in sequence domain.
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• From this circuit, we get

𝐼𝐼0𝑎𝑎 = 𝐼𝐼1𝑎𝑎 = 𝐼𝐼2𝑎𝑎 =
1.0∠0∘

𝑍𝑍0𝑠𝑠𝑖𝑖 + 𝑍𝑍1𝑠𝑠𝑖𝑖 + 𝑍𝑍2𝑠𝑠𝑖𝑖

And,
𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎 = 3𝐼𝐼1𝑎𝑎
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7.6.3 SLG Fault

Fig: SLG fault in sequence domain.
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• The conditions for this fault in the phase domain 
are 𝑰𝑰𝑖𝑖𝑎𝑎𝑎𝑎 = 0, 𝑰𝑰𝑖𝑖𝑎𝑎𝑎𝑎 = −𝑰𝑰𝒊𝒊𝒂𝒂𝒄𝒄, and 𝑽𝑽𝒊𝒊𝑎𝑎 = 𝑽𝑽𝒊𝒊𝒂𝒂. 

• Transforming these conditions to sequence 
domain gives

𝐼𝐼0𝑎𝑎

𝑰𝑰1𝑎𝑎

𝑰𝑰2𝑎𝑎
=

1
3

1 1 1
1 𝒂𝒂 𝒂𝒂2
1 𝒂𝒂2 𝒂𝒂

0
𝑰𝑰𝑖𝑖𝑎𝑎𝑎𝑎

−𝑰𝑰𝑖𝑖𝑎𝑎𝑎𝑎
=

1
3

0
𝒂𝒂 − 𝒂𝒂2 𝑰𝑰𝑖𝑖𝑎𝑎𝑎𝑎

𝒂𝒂2 − 𝒂𝒂 𝑰𝑰𝑖𝑖𝑎𝑎𝑎𝑎

and

𝑉𝑉0𝑎𝑎 + 𝑎𝑎2𝑉𝑉1𝑎𝑎 + 𝑎𝑎𝑉𝑉2𝑎𝑎 = 𝑉𝑉0𝑎𝑎 + 𝑎𝑎𝑉𝑉1𝑎𝑎 + 𝑎𝑎2𝑉𝑉2𝑎𝑎

Therefore,

𝐼𝐼2𝑎𝑎 = −𝐼𝐼1𝑎𝑎 =
1
3
𝑎𝑎 − 𝑎𝑎2 𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎

and

𝑎𝑎2 − 𝑎𝑎 𝑉𝑉1𝑎𝑎 = 𝑎𝑎2 − 𝑎𝑎 𝑉𝑉2𝑎𝑎 75

7.6.4 LL Fault

Fig: LL fault in sequence domain.
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or

𝑉𝑉1𝑎𝑎 = 𝑉𝑉2𝑎𝑎

• Based on the equations,

 𝐼𝐼2𝑎𝑎 = −𝐼𝐼1𝑎𝑎 = 1
3
𝑎𝑎 − 𝑎𝑎2 𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎, and 𝑉𝑉1𝑎𝑎 = 𝑉𝑉2𝑎𝑎, we can 

create a circuit as shown in the figure.

𝐼𝐼1𝑎𝑎 = −𝐼𝐼2𝑎𝑎 =
1.0∠0∘

𝑍𝑍1𝑠𝑠𝑖𝑖 + 𝑍𝑍2𝑠𝑠𝑖𝑖

and

𝑰𝑰𝒊𝒊𝒂𝒂𝒄𝒄  = 𝑰𝑰0𝒄𝒄 + 𝑎𝑎2𝑰𝑰1𝒄𝒄 + 𝑎𝑎𝑰𝑰2𝒄𝒄 = 𝑎𝑎2 − 𝑎𝑎 𝑰𝑰1𝒄𝒄

 = −𝑗𝑗 3𝑰𝑰1𝒄𝒄
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7.6.4 LL Fault

Fig: LL fault in sequence domain.
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Thank You!
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